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The processes of condensation-evaporation and adsorption-desorption of molecules on small aerosol particles
are investigated theoretically with account for the dependence of the condensation (sticking) coefficient on the
particle size.

In recent years, problems related to the distinctive features of the processes of formation and growth of
small particles (clusters) and of adsorption of molecules on such particles have attracted the increasing attention of
researchers. Among them are problems of the physicochemistry of the atmosphere [1], problems of obtaining
nanoparticles of different kind in the course of chemical deposition [2], and heterogeneous chemical reactions on
small particles [3]. Here the dimensional effect influencing the processes mentioned above is usually related to the
Knudsen number, determined as the ratio of the free path of gas molecules to the radius of a particle, and to the
effect of increase in the vapor pressure above a spherical surface of phase transition that is described by the Kel-
vin formula. It should be noted that the dimensional effect will also occur in collision of a gas (vapor) molecule
with the particle, which will appear as the dependence of the sticking (condensation) coefficient on the particle ra-
dius.

Let us explain the aforesaid using Fig. 1, which shows the spherical particle 1 with an incident gas (vapor)
molecule a and an adsorbed molecule b. It is clear from the figure that both in escape from the particle surface
(evaporation or desorption of molecules) and on collision of the incident molecule with the particle the gas mole-
cule interacts with the smaller number of molecules of the condensed phase than in the case of its escape from
or collision with a flat surface of the condensed phase of the same substance of which the particle consists. The
difference lies in the fact that for the particle calculation of the forces acting on the gas molecule on the source
side of the particle eliminates the molecules of the condensed phase located in region 2 beneath the surface Sc,
i.e., all the molecules of the condensed phase beneath the surface Sc except for those located in region 1 (in the
particle).

In [4], consideration has been given to the problem of evaporation of a droplet with account for the de-
pendence of the condensation coefficient on the droplet size (radius). In obtaining the expression for the depend-
ence of the condensation coefficient (which, in [4], was assumed to be equal to the evaporation coefficient) on the
droplet dimension, Okuyama and Zung [4] proceeded from the following. It was assumed that condensation on the
flat surface of a massive specimen was a non-activation process. However in condensation on a droplet a molecule
must overcome the activation barrier due to the surface curvature. In [4], this activation energy is assumed to be
equal to the surface energy divided by the number of molecules in the droplet. The following expression is given
for the condensation coefficient αc [4]:

αc = αc∞ exp 



− 

3σVm

RkT




 , (1)

where αc∞ is the condensation coefficient for the flat surface of the massive specimen.
Let us consider the condensation growth of an aerosol particle in the atmosphere of a buffer gas. The sys-

tem is assumed to be isothermal. The concentration of the vapor is considered to be much lower than the con-
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centration of the buffer gas, and the adsorption of the buffer-gas molecules on the particle surface as well as their
absorption will thereafter be neglected.

It is known that an exact description of the transfer processes in a gas–aerosol particle system with an ar-
bitrary size of the particle and phase transitions on its surface can be performed only by solution of the Boltz-
mann kinetic equation [1, 5, 6]. However, the arising mathematical difficulties lead to the necessity of obtaining
rather simple expressions for the resultant molecular flux into the particle either on the basis of an approximate
solution of the Boltzmann equation or with the use of simpler models. As is noted in [5], when it is considered
that the diffusion equation describes the distribution of the vapor concentration in a gas–particle system up to the
surface of the particle and the boundary condition is assigned on its surface, the expression for the resultant flux
of vapor molecules into the particle will give correct limiting cases for free-molecular and continuous flow re-
gimes. In [7], the possibility of assigning the boundary condition on the particle surface when the particle radius
is less than the free path of the gas molecules is discussed.

Without dwelling on the numerous theoretical approaches available in the literature that enable one to ob-
tain expressions for the resultant flux of vapor molecules into the particle with a certain degree of accuracy (a re-
view of these works can be found, for example, in [1, 5, 6]), we will describe, in view of what has been said
above, the problem of mass transfer in a gas–particle system by a diffusion equation with the boundary conditions
assigned for r = R and r → ∞. The distribution of the vapor concentration in the vicinity of the spherical particle
in a quasisteady approximation has the form [1]

n = A − 
B
r

 , (2)

where A and B are the integration constants determined from the boundary conditions.
For r → ∞ we set n = n0, whence it follows that

A = n0 . (3)

Based on the assumptions made, the second boundary condition with the Maxwell velocity-distribution
function for incident vapor molecules can be written as

D 
dn

dr


 r=R

 = 




kT

2πm





1 ⁄ 2

 



αcn (R) − αene exp 





2σVm

RkT








 . (4)

In what follows, for simplicity we set the condensation coefficient for a flat surface and the evaporation
coefficient equal to unity. With account for (1)–(4) for the density of the resultant flux of vapor molecules into
the particle we obtain

Fig. 1. Scheme of interaction of gas (vapor) molecules with a small aerosol
particle.
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where S = 
n0

ne
, N = n0 





kT

2πm




1 ⁄ 2
, and 

vR
4D

 = 
3

4Kn
.

It follows from (5) that the critical (equilibrium) drop radius, which is determined from the condition of
equality of the expression in square brackets of (5) to zero, shifts toward larger values in the case of the depend-
ence of the condensation coefficient on the dimension of the drop. The value of the critical radius R∗  is equal to
R∗  = 5σVm

 ⁄ (kT ln S), whereas the critical radius is R∗  = 2σVm
 ⁄ (kT ln S) for the condensation coefficient independent

of the dimension of the drop.
Figure 2 shows the dependence of the dimensionless density of the molecular flux I′ = I ⁄ N on the radius

of a water drop at 273 K and the diffusivity of water molecules in a buffer gas D = 0.219 cm2 ⁄ sec (such a value
of D has been given for water vapor in air in [8]) with account for the dependence of the condensation coeffi-
cient on the particle size and at a constant value of this coefficient equal to unity. The values of the parameter
S were taken to be equal to 1.35 and 1. It follows from Fig. 2 that the growth of the drop is retarded and the
evaporation rate increases with account for the dependence of the condensation coefficient on the dimension of the
drop. It should be noted that Okuyama and Zung [4] mistakenly inferred that there can be a maximum in the de-
pendence of the evaporation rate on the dimension of the drop. The reason is that in [4] the incorrect dependence
of the ratio of the fluxes of condensing and evaporating molecules on the drop dimension was used. When the
drop dimension increases, the density of the resultant flux of molecules evaporating from the drop will decrease
due to both the Kelvin effect and the increase in the density of the flux of condensing molecules because of the
increase in the condensation coefficient in accordance with (1). Thus, the density of the resultant flux of the mole-
cules evaporating from the drop with increase in its dimension will do nothing but decrease owing to the effects
mentioned above and because of the diffusive resistance hindering the removal of vapor molecules from the drop.
It is clear from Fig. 2 that the maximum in the dependence of the density of the resultant molecular flux on the
dimension of the drop appears in its condensation growth. This is attributed to two factors affecting the rate of
growth in opposite directions. For rather small drops when the curvature correction for the density of the resultant

Fig. 2. Dimensionless density of the resultant flux of vapor molecules into the
water drop vs. radius of the drop (T = 273 K): 1, 3) αc = 1; 2, 4) αc = f(R); 1,
2) S = 1.35; 3, 4) S = 1. R, cm.
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molecular flux into the drop is substantial the increase in the drop radius leads to an increase in the density of
the indicated flux. On the other hand, the diffusive resistance to the supply of vapor molecules to the drop which
is characterized by the second term in the denominator of expression (5) begins to increase with increase in the
drop radius, which, naturally, decreases the density of the resultant molecular flux into the drop (and correspond-
ingly the rate of its growth).

It should be noted that dimensional effects analogous to those considered above can also occur in the
processes of adsorption and desorption of molecules on small particles. Here, similarly to the case of evaporation
of small particles, the probability of desorption of a gas molecule from a particle will be higher than that from
a flat surface. As follows from Fig. 1, determination of the adsorption energy of a molecule on a small particle
necessitates summation of the forces affecting the adsorbed molecule on the source side of the particle. We note
that with the particle radius approaching infinity the adsorption energy must tend to such on the flat surface; oth-
erwise, when there is a single molecule of the adsorbate substance, the "adsorption" energy is actually equal to the
energy E12 of breaking of the bond of two molecules, one of which is a gas molecule and the other of which
is an adsorbate molecule. On this basis, in the general case we can write the following approximate interpolation
formula for the energy required for the escape of a gas molecule from the spherical particle (cluster) which gives
the limiting cases for the energy of adsorption of a molecule on a flat surface and the energy of breaking of the
bond E12 for the molecules indicated above:

 Ea = Ea∞ − (Ea∞ − E12) 




δ
l




ϕ

 , (6)

where δ is the sum of the radii of the gas molecule and the molecule of the particle substance, l is the distance be-
tween the centers of the particle and the molecule adsorbed on it (in the limiting case of two molecules l = δ), Ea∞ is
the energy of adsorption of the molecule on the flat adsorbate surface, and ϕ is the parameter accounting for the prop-
erties of the potential of interaction between the gas molecule and the molecules of the particle.

It should be noted that a formula analogous to (6) can also be written for the energy of evaporation of
a molecule from the small particle.

As follows from (6), when E12 < Ea∞ the energy of adsorption on the small spherical particle will be less
than the energy of adsorption on the flat surface. The smaller values of the adsorption energy generally correspond
to a better reflection of molecules from the surface [9] (i.e., to smaller values of the sticking coefficient).

For the sticking coefficient we can write the expression [10, 11]

β = 1 − exp 



− 

Es

kT




 . (7)

The value of Es depends on the adsorption energy [10, 11]. For example, in the simplest case of approximation con-
sidering the collision of a molecule with a surface atom as the impact of free particles and with fulfillment of the in-
equality mg

 ⁄ M << 1, where m  is the mass of the impinging gas molecule and M is the mass of the atom of the
adsorbent lattice, it follows for Es [10, 11] that

Es C 4 
mg

M
 Ea . (8)

It is seen from (6)–(8) that with decrease in the particle radius (and correspondingly in the adsorption en-
ergy) the coefficient of sticking of the gas molecule to the particle surface will also decrease.

We note that when adsorbed molecules move over a curved surface the centrifugal force f will affect the
molecule [12, 13]. In the case of an aerosol particle the considered effect promotes the detachment of the molecule
adsorbed from the particle. In modeling the molecules adsorbed by a two-dimensional gas, the value of the cen-
trifugal force can be estimated as f = mava

2
__

 ⁄ R, where ma is the mass of the adsorbed molecule and va
2

__
 is the mean

square of the velocity of two-dimensional motion along the surface [12]. It follows from the expression for f that
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the smaller the particle radius, the larger the quantity f. The effect considered will lead to an increase in the prob-
ability of desorption (evaporation) of the molecules from the surface of the small particle.

A decrease in the energy of adsorption of the molecules on the surface of small particles and a decrease
in the coefficient of sticking of the gas molecules to such particles can also result in a change in the course of
heterogeneous chemical reactions on the small particles.

We disregard the effect of blocking of the surface by the adsorbed molecules in the two-stage approxima-
tion which allows for the reactant molecule that is in the intermediate state of physical adsorption. For the coef-
ficient γ characterizing the probability of a heterogeneous chemical reaction of first order on collision of the mole-
cule with the surface we can write the following expression:

γ = 
β

1 + (krτ)−1
 = 

β

1 + (kr0τ0)−1
 exp 



(Er − Ea) ⁄ (kT)




 . (9)

As has been noted above, for small particles the values of β and Ea can be lower than for a massive
specimen of condensed phase. This in turn can also result in a decrease in the coefficient γ.

Let us consider the question of the influence of a decrease in the evaporation (desorption) energy and the
sticking coefficient with decrease in the particle radius on the arrival of impurity molecules at small (nano) par-
ticles during their condensation growth. For the relative concentration ci of the impurity molecules in the particle
in the free-molecular regime of flow we have [14]

ci = 
βiNi

I + Fi
 , (10)

where βi is the coefficient of sticking of the impurity molecules to the particle surface and Ni is the flux density of
the impurity molecules impinging on the particle,

Fi = ns 




kT

2πmi





1 ⁄ 2

 exp 



− 

Qi
kT




 . (11)

Here ns is the number of molecules per unit volume of the condensed phase (assumed to be a constant), mi is the
mass of the impurity molecule, and Qi is the energy of evaporation of the impurity molecules from the particle.

On this basis in the case Fi >> I it follows from (10) that the smaller the particle, the lower the concen-
tration of the impurity in it. This is caused by the decrease in both the sticking coefficient of the impurity mole-
cules and the evaporation energy of these molecules with decrease in the particle size.

The considered regularities associated with the decrease in the condensation (sticking) coefficient with de-
crease in the particle size will, naturally, manifest themselves in the problems of homogeneous nucleation as well.
We note that, in analyzing nucleation processes, the condensation and evaporation coefficients are assumed to be
equal to unity in a number of cases. It follows from what has been said above that for rather small particles
(clusters) the condensation coefficient for vapor molecules will be less than unity.

The critical (equilibrium) radius R∗  of the particle (cluster) is generally determined by the expression

R
∗
 = 

2σVm

kT ln 



S 

αc

αe





   . (12)

It follows from (12) that the decrease in the condensation coefficient at constant values of the other pa-
rameters leads to an increase in the critical radius. The quantity αc can decrease both with decrease in the particle
radius and as a result of external actions (for example, of resonance laser radiation).

Thus, in the problems of growth (evaporation) of small particles as well as in the problems of adsorption
(desorption) and heterogeneous chemical reactions on small particles, taking account of the dependence of both the

796



condensation (sticking) coefficient and the adsorption energy on the particle size results in the peculiarities attrib-
uted to this dimensional effect. In particular, under the conditions where the dependence of the condensation co-
efficient on the particle size is substantial, the assumption of equality of the condensation and evaporation
coefficients (this assumption is often used in analyzing problems of heat and mass transfer with allowance for
phase transitions) fails. This can lead to incorrect results in calculating the flux of vapor molecules into the par-
ticle. The decrease in the condensation coefficient for small particles (clusters) and the difference in the conden-
sation and evaporation coefficients should also be taken into account in investigating the problem of homogeneous
nucleation.

NOTATION

R, particle (drop) radius; r, radial coordinate reckoned from the particle center; T, temperature; Vm, volume
per molecule in the particle; k, Boltzmann constant; kr, rate constant of the heterogeneous chemical reaction; τ, ad-
sorption time of the reactant molecules; kr0 and τ0, preexponential factors for the rate constant of the heterogene-
ous chemical reaction and the adsorption time; D, diffusivity of the vapor molecules in the buffer gas; m, mass
of a vapor molecule; αc, condensation coefficient; αe, evaporation coefficient; β, sticking coefficient; I, density of
the resultant flux of the vapor molecules into the particle; σ, surface tension; n, number concentration of the vapor
molecules; ne, number concentration of the molecules of a saturated vapor above the flat surface; ci, relative con-
centration of the impurity molecules in the particle; Kn, Knudsen number; Ea, adsorption energy; Er, activation en-
ergy of the heterogeneous chemical reaction; Es, specific energy of interaction of a molecule with a wall. Subscripts:
a, adsorption; r, reaction; m, molecule; c, condensation; e, evaporation; i, impurity; g, gas.
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